Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{(1\$,2\$,4aR,8R,8aR)-8-Hydroxy-4a,8dimethyl-1-[(2E)-2-methylbut-2-enovloxy]perhydronaphthalen-2-yl}acrylic acid from Sclerorhachis platyrachis

Rasool Kheyrabadi,^a Zohreh Habibi^a and Seik Weng Ng^{b,c}*

^aDepartment of Chemistry, Shahid Beheshti University, General Campus, Tehran, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 13 September 2011; accepted 15 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.076; data-to-parameter ratio = 15.4.

The eudesmane-type terpenoid, $C_{20}H_{30}O_5$, isolated from Sclerorhachis platyrachis, has a decalin skeleton whose sixmembered rings adopt chair conformations. The two methyl substituents occupy axial positions, whereas the other three substituents occupy equatorial positions. The hydroxy group is an intramolecular hydrogen-bond donor to the single-bond ester O atom; adjacent molecules are linked through the carboxylic acid interacting with the hydroxyl group, forming a hydrogen-bonded chain running along the c axis.

Related literature

For the crystal structure of epiilic acid, see: Daniewski et al. (1986). For a review of eudesmane-type sesquiterpenoids, see: Wu et al. (2006).

Experimental

Crystal data

$C_{20}H_{30}O_5$	V = 946.85 (3) Å ³
$M_r = 350.44$	Z = 2
Monoclinic, P2 ₁	Cu $K\alpha$ radiation
a = 6.2718 (1) Å	$\mu = 0.71 \text{ mm}^{-1}$
b = 19.0285 (3) Å	$T = 100 { m K}$
c = 8.4530 (2) Å	$0.20 \times 0.20 \times 0.20$
$\beta = 110.184 \ (2)^{\circ}$	

Data collection

```
Agilent SuperNova Dual
  diffractometer with an Atlas
  detector
Absorption correction: multi-scan
  (CrysAlis PRO; Agilent, 2010)
```

 $T_{\min} = 0.872, T_{\max} = 0.872$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.076$ S = 1.033663 reflections 238 parameters 1 restraint

tion × 0.20 mm

5962 measured reflections 3663 independent reflections 3635 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.015$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1705 Friedel pairs
Flack parameter: 0.08 (11)

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1 - H1 \cdots O5^{i}$	0.85 (2)	1.80 (2)	2.648 (1)	174 (2)
$D5 - H5 \cdots O3$	0.85 (2)	1.99 (2)	2.692 (1)	139 (2)

Symmetry code: (i) x, y, z + 1.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2330).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Daniewski, W. M., Kroszcznski, W., Bloszyk, E., Drozdz, B., Nawrot, J., Rychlewska, U., Budesinsky, M. & Holub, M. (1986). Collect. Czech. Chem. Commun. 51, 1710–1721.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, Q.-X., Shi, Y.-P. & Jia, Z.-J. (2006). Nat. Prod. Rep. 23, 699-734.

Acta Cryst. (2011). E67, o2699 [doi:10.1107/S1600536811037640]

2-{(1*S*,2*S*,4a*R*,8*R*,8a*R*)-8-Hydroxy-4a,8-dimethyl-1-[(2*E*)-2-methylbut-2enoyloxy]perhydronaphthalen-2-yl}acrylic acid from *Sclerorhachis platyrachis*

R. Kheyrabadi, Z. Habibi and S. W. Ng

Comment

Eudesmane-type of sesquiterpenoids (from the Asteraceae family) have been reviewed; some structural assignments and stereochemistries have also revised; however, the title compound (Scheme I) is not included in the review (Wu *et al.*, 2006). The compound is a derivative of epiilic (vachanic) acid having a 1-(2-methylbut-2-enoyloxy) substitutent. The crystal structure of the parent acid itself, which was first isolated from *Dittrichia vicossa* (*L*.), has been reported (Daniewski *et al.*, 186). The two methyl substituents occupy axial positions whereas the other three substituents occupy equatorial positions (Fig 1). The hydroxy group is an intramolecular hydrogen-bond donor to the single-bond ester O atom; adjacent molecules are linked through the carboxylic acid portion to form a hydrogen-bonded chain running along the *c*-axis of the monoclinic unit cell (Table 1).

Experimental

The leaves and stems of *Sclerorhachis platyrachis* (Compositae family) were collected from Sabzevar, Khorasan Razavi Province, Iran, at the flowering stage of the plant, *i.e.*, around May. The aerial parts were dried in the shade. The aerial parts (300 g) were extracted with chloroform by maceration at room temperature. The extract was concentrated to a green gummy extract (16 g). The extract was subjected to column chromatography on silica gel (4×70 cm, 70-230 mesh) with a gradient of *n*-hexane–ethyl acetate and then methanol as eluent. Eighty-three fractions were collected according to TLC analysis and those giving similar spots were combined. Fraction 51 (*n*-hexane: ethylacetate 4:1) afforded colorless crystals of the title compound (500 mg).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, $U_{iso}(H)$ 1.2 to 1.5 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The carboxylic and hydroxy H-atoms were located in a difference Fourier map, and were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{20}H_{30}O_5$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. Hydrogen-bonded chain structure.

$\label{eq:starses} 2-\{(1S,2S,4aR,8R,8aR)-8-Hydroxy-\ 4a,8-dimethyl-1-[(2E)-2-methylbut-2-enoyloxy] decahydronaphthalen-\ 2-yl\}acrylic acid$

$C_{20}H_{30}O_5$	F(000) = 380
$M_r = 350.44$	$D_{\rm x} = 1.229 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P 2yb	Cell parameters from 4968 reflections
a = 6.2718(1) Å	$\theta = 5.6 - 74.1^{\circ}$
<i>b</i> = 19.0285 (3) Å	$\mu = 0.71 \text{ mm}^{-1}$
c = 8.4530 (2) Å	T = 100 K
$\beta = 110.184 \ (2)^{\circ}$	Prism, colourless
$V = 946.85 (3) \text{ Å}^3$	$0.20 \times 0.20 \times 0.20 \text{ mm}$
<i>Z</i> = 2	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	3663 independent reflections
Radiation source: SuperNova (Cu) X-ray Source	3635 reflections with $I > 2\sigma(I)$
Mirror	$R_{\rm int} = 0.015$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 74.2^{\circ}, \ \theta_{\text{min}} = 5.6^{\circ}$
ω scans	$h = -6 \rightarrow 7$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -23 \rightarrow 22$
$T_{\min} = 0.872, \ T_{\max} = 0.872$	$l = -10 \rightarrow 10$
5962 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2 + 0.1079P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3663 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
238 parameters	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

1 restraint

Absolute structure: Flack (1983), 1705 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: 0.08 (11)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.94364 (17)	0.50094 (5)	0.32350 (12)	0.0229 (2)
O2	1.0317 (2)	0.39226 (6)	0.42340 (14)	0.0337 (2)
O3	0.88724 (14)	0.44178 (4)	-0.13924 (11)	0.01664 (18)
O4	0.64080 (17)	0.41443 (5)	-0.00727 (13)	0.0264 (2)
05	0.76555 (15)	0.51072 (5)	-0.43525 (11)	0.01914 (19)
C1	1.0458 (2)	0.43922 (7)	0.33077 (16)	0.0212 (3)
C2	1.1838 (2)	0.43410 (7)	0.21712 (15)	0.0190 (2)
C3	1.3138 (3)	0.37790 (8)	0.2342 (2)	0.0305 (3)
H3A	1.3167	0.3431	0.3155	0.037*
H3B	1.4042	0.3723	0.1651	0.037*
C4	1.1868 (2)	0.49268 (6)	0.09608 (15)	0.0170 (2)
H4	1.2901	0.4766	0.0358	0.020*
C5	1.2922 (2)	0.56070 (7)	0.19001 (15)	0.0200 (3)
H5A	1.2069	0.5752	0.2636	0.024*
H5B	1.4512	0.5514	0.2626	0.024*
C6	1.2884 (2)	0.62031 (7)	0.06860 (16)	0.0199 (3)
H6A	1.3928	0.6086	0.0073	0.024*
H6B	1.3454	0.6637	0.1342	0.024*
C7	1.0501 (2)	0.63443 (6)	-0.06021 (15)	0.0167 (2)
C8	0.8926 (2)	0.65941 (7)	0.03410 (16)	0.0205 (3)
H8A	0.9591	0.7008	0.1024	0.031*
H8B	0.8751	0.6217	0.1075	0.031*
H8C	0.7435	0.6717	-0.0477	0.031*
С9	1.0683 (2)	0.69343 (7)	-0.17927 (17)	0.0198 (3)
H9A	1.1013	0.7383	-0.1162	0.024*
H9B	1.1968	0.6832	-0.2182	0.024*
C10	0.8522 (2)	0.70175 (7)	-0.33205 (16)	0.0205 (3)
H10A	0.7238	0.7141	-0.2946	0.025*
H10B	0.8720	0.7402	-0.4047	0.025*
C11	0.8004 (2)	0.63328 (7)	-0.43153 (15)	0.0196 (3)
H11A	0.9268	0.6226	-0.4726	0.023*
H11B	0.6611	0.6396	-0.5313	0.023*
C12	0.7668 (2)	0.57076 (7)	-0.32876 (14)	0.0165 (2)
C13	0.5355 (2)	0.57294 (7)	-0.30647 (15)	0.0210 (3)
H13A	0.5234	0.5336	-0.2353	0.031*
H13B	0.4151	0.5693	-0.4169	0.031*
H13C	0.5196	0.6173	-0.2529	0.031*
C14	0.97307 (19)	0.56460 (6)	-0.16172 (14)	0.0150 (2)
H14	1.1038	0.5505	-0.1968	0.018*
C15	0.95518 (19)	0.50674 (6)	-0.04079 (14)	0.0144 (2)
H15	0.8402	0.5198	0.0118	0.017*
C16	0.7264 (2)	0.40082 (6)	-0.11125 (15)	0.0178 (2)

Fractional	atomic	coordinates	and	isotropic or	equivalent	isotropic	displacement	parameters ((Å ²)

C17	0.6621 (2)	0.33936 (6)	-0.22701 (15)	0.0172 (2)
C18	0.7910 (2)	0.32087 (7)	-0.31761 (16)	0.0196 (3)
H18	0.9227	0.3486	-0.3021	0.024*
C19	0.7516 (2)	0.26166 (7)	-0.44010 (17)	0.0249 (3)
H19A	0.8832	0.2301	-0.4053	0.037*
H19B	0.7301	0.2804	-0.5526	0.037*
H19C	0.6156	0.2356	-0.4429	0.037*
C20	0.4449 (2)	0.30420 (7)	-0.23055 (18)	0.0249 (3)
H20A	0.4210	0.2614	-0.2990	0.037*
H20B	0.3170	0.3364	-0.2795	0.037*
H20C	0.4556	0.2920	-0.1154	0.037*
H1	0.881 (4)	0.5016 (12)	0.399 (3)	0.053 (6)*
H5	0.787 (4)	0.4729 (12)	-0.379 (3)	0.041 (5)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0310 (5)	0.0223 (5)	0.0201 (4)	0.0048 (4)	0.0150 (4)	0.0010 (4)
O2	0.0468 (6)	0.0291 (5)	0.0353 (6)	0.0089 (5)	0.0270 (5)	0.0130 (5)
O3	0.0187 (4)	0.0162 (4)	0.0172 (4)	-0.0033 (3)	0.0090 (3)	-0.0039 (3)
O4	0.0302 (5)	0.0262 (5)	0.0305 (5)	-0.0080 (4)	0.0205 (4)	-0.0073 (4)
O5	0.0248 (5)	0.0190 (5)	0.0144 (4)	0.0004 (4)	0.0078 (3)	-0.0025 (4)
C1	0.0245 (6)	0.0220 (6)	0.0178 (6)	0.0016 (5)	0.0082 (5)	0.0016 (5)
C2	0.0211 (5)	0.0192 (6)	0.0170 (5)	-0.0002 (5)	0.0069 (4)	0.0022 (5)
C3	0.0377 (8)	0.0240 (7)	0.0382 (8)	0.0084 (6)	0.0238 (7)	0.0095 (6)
C4	0.0175 (6)	0.0182 (6)	0.0162 (5)	-0.0002 (4)	0.0069 (5)	0.0005 (5)
C5	0.0199 (6)	0.0217 (7)	0.0153 (5)	-0.0035 (5)	0.0019 (4)	0.0003 (5)
C6	0.0185 (6)	0.0209 (6)	0.0194 (6)	-0.0042 (5)	0.0053 (5)	0.0000 (5)
C7	0.0186 (6)	0.0156 (6)	0.0159 (5)	-0.0025 (4)	0.0058 (5)	-0.0017 (4)
C8	0.0244 (6)	0.0189 (6)	0.0193 (6)	-0.0004 (5)	0.0090 (5)	-0.0041 (5)
С9	0.0218 (6)	0.0169 (6)	0.0214 (6)	-0.0017 (4)	0.0083 (5)	0.0003 (4)
C10	0.0252 (6)	0.0161 (6)	0.0207 (6)	0.0034 (5)	0.0084 (5)	0.0027 (5)
C11	0.0220 (6)	0.0212 (6)	0.0150 (6)	0.0017 (5)	0.0057 (5)	0.0010 (5)
C12	0.0184 (6)	0.0170 (6)	0.0147 (5)	0.0011 (5)	0.0063 (4)	-0.0024 (5)
C13	0.0166 (6)	0.0269 (7)	0.0189 (6)	0.0014 (5)	0.0054 (5)	-0.0025 (5)
C14	0.0147 (5)	0.0168 (6)	0.0147 (5)	-0.0004 (4)	0.0067 (4)	-0.0020 (5)
C15	0.0167 (6)	0.0133 (5)	0.0141 (5)	-0.0008 (4)	0.0065 (4)	-0.0027 (4)
C16	0.0161 (5)	0.0196 (6)	0.0186 (6)	-0.0007 (4)	0.0072 (4)	0.0017 (5)
C17	0.0166 (5)	0.0157 (6)	0.0182 (5)	-0.0002 (4)	0.0045 (4)	0.0013 (4)
C18	0.0186 (6)	0.0196 (6)	0.0197 (6)	-0.0010 (5)	0.0054 (5)	-0.0006 (5)
C19	0.0265 (6)	0.0251 (7)	0.0232 (7)	-0.0012 (5)	0.0088 (5)	-0.0056 (5)
C20	0.0199 (6)	0.0232 (7)	0.0333 (7)	-0.0044 (5)	0.0113 (5)	-0.0041 (5)

Geometric parameters (Å, °)

O1—C1	1.3290 (16)	C9—C10	1.5236 (18)
O1—H1	0.85 (2)	С9—Н9А	0.9900
O2—C1	1.2113 (16)	С9—Н9В	0.9900
O3—C16	1.3586 (15)	C10—C11	1.5237 (18)

O3—C15	1.4689 (13)	C10—H10A	0.9900
O4—C16	1.2056 (16)	C10—H10B	0.9900
O5—C12	1.4530 (14)	C11—C12	1.5297 (17)
О5—Н5	0.85 (2)	C11—H11A	0.9900
C1—C2	1.5021 (17)	C11—H11B	0.9900
C2—C3	1.322 (2)	C12—C13	1.5265 (16)
C2—C4	1.5175 (16)	C12—C14	1.5559 (15)
С3—НЗА	0.9500	C13—H13A	0.9800
С3—Н3В	0.9500	C13—H13B	0.9800
C4—C15	1.5365 (15)	C13—H13C	0.9800
C4—C5	1.5429 (17)	C14—C15	1.5325 (16)
C4—H4	1.0000	C14—H14	1.0000
C5—C6	1.5245 (17)	C15—H15	1.0000
С5—Н5А	0.9900	C16—C17	1.4885 (16)
С5—Н5В	0.9900	C17—C18	1.3388 (18)
C6—C7	1.5394 (17)	C17—C20	1.5083 (17)
С6—Н6А	0.9900	C18—C19	1.4920 (17)
С6—Н6В	0.9900	C18—H18	0.9500
С7—С9	1.5380 (17)	C19—H19A	0.9800
С7—С8	1.5428 (17)	C19—H19B	0.9800
C7—C14	1.5650 (16)	С19—Н19С	0.9800
C8—H8A	0.9800	C20—H20A	0.9800
C8—H8B	0.9800	C20—H20B	0.9800
C8—H8C	0.9800	С20—Н20С	0.9800
C1—O1—H1	108.4 (15)	H10A—C10—H10B	108.2
C16—O3—C15	118.15 (9)	C10-C11-C12	113.36 (10)
С12—О5—Н5	110.5 (14)	C10-C11-H11A	108.9
O2—C1—O1	122.71 (12)	C12—C11—H11A	108.9
O2—C1—C2	123.53 (12)	C10-C11-H11B	108.9
O1—C1—C2	113.74 (11)	C12—C11—H11B	108.9
C3—C2—C1	116.90 (12)	H11A—C11—H11B	107.7
C3—C2—C4	121.14 (12)	O5-C12-C13	107.20 (10)
C1—C2—C4	121.84 (11)	O5—C12—C11	103.42 (9)
С2—С3—НЗА	120.0	C13—C12—C11	111.83 (11)
С2—С3—Н3В	120.0	O5-C12-C14	109.15 (9)
НЗА—СЗ—НЗВ	120.0	C13—C12—C14	114.71 (9)
C2—C4—C15	114.03 (10)	C11—C12—C14	109.86 (10)
C2—C4—C5	111.84 (10)	С12—С13—Н13А	109.5
C15—C4—C5	111.54 (10)	C12—C13—H13B	109.5
C2—C4—H4	106.3	H13A—C13—H13B	109.5
C15—C4—H4	106.3	С12—С13—Н13С	109.5
C5—C4—H4	106.3	H13A—C13—H13C	109.5
C6—C5—C4	111.93 (10)	H13B—C13—H13C	109.5
С6—С5—Н5А	109.2	C15-C14-C12	115.48 (9)
C4—C5—H5A	109.2	C15—C14—C7	108.91 (9)
С6—С5—Н5В	109.2	C12—C14—C7	115.86 (10)
C4—C5—H5B	109.2	C15—C14—H14	105.1
H5A—C5—H5B	107.9	C12—C14—H14	105.1
C5—C6—C7	113.06 (10)	C7—C14—H14	105.1

С5—С6—Н6А	109.0	O3—C15—C14	107.48 (8)
С7—С6—Н6А	109.0	O3—C15—C4	107.10 (9)
С5—С6—Н6В	109.0	C14—C15—C4	111.08 (9)
С7—С6—Н6В	109.0	O3—C15—H15	110.4
H6A—C6—H6B	107.8	С14—С15—Н15	110.4
С6—С7—С9	108.48 (10)	C4—C15—H15	110.4
C6—C7—C8	109.08 (10)	O4—C16—O3	123.23 (11)
С9—С7—С8	108.57 (10)	O4—C16—C17	124.06 (11)
C6—C7—C14	106.28 (10)	O3—C16—C17	112.67 (10)
C9—C7—C14	109.85 (9)	C18—C17—C16	120.16 (11)
C8—C7—C14	114.42 (10)	C18—C17—C20	126.28 (12)
С7—С8—Н8А	109.5	C16—C17—C20	113.55 (11)
С7—С8—Н8В	109.5	C17—C18—C19	127.40 (12)
H8A—C8—H8B	109.5	C17—C18—H18	116.3
С7—С8—Н8С	109.5	C19—C18—H18	116.3
H8A—C8—H8C	109.5	С18—С19—Н19А	109.5
H8B—C8—H8C	109.5	С18—С19—Н19В	109.5
С10—С9—С7	112.67 (10)	H19A—C19—H19B	109.5
С10—С9—Н9А	109.1	С18—С19—Н19С	109.5
С7—С9—Н9А	109.1	H19A—C19—H19C	109.5
С10—С9—Н9В	109.1	H19B—C19—H19C	109.5
С7—С9—Н9В	109.1	С17—С20—Н20А	109.5
Н9А—С9—Н9В	107.8	С17—С20—Н20В	109.5
С11—С10—С9	109.70 (10)	H20A—C20—H20B	109.5
C11—C10—H10A	109.7	С17—С20—Н20С	109.5
С9—С10—Н10А	109.7	H20A—C20—H20C	109.5
С11—С10—Н10В	109.7	H20B—C20—H20C	109.5
С9—С10—Н10В	109.7		
O2—C1—C2—C3	-7.2 (2)	C13—C12—C14—C7	-79.68 (14)
O1—C1—C2—C3	171.30 (13)	C11—C12—C14—C7	47.30 (13)
O2—C1—C2—C4	176.65 (13)	C6—C7—C14—C15	63.08 (12)
O1—C1—C2—C4	-4.81 (17)	C9—C7—C14—C15	-179.76 (9)
C3—C2—C4—C15	120.75 (14)	C8—C7—C14—C15	-57.36 (13)
C1—C2—C4—C15	-63.31 (15)	C6—C7—C14—C12	-164.75 (10)
C3—C2—C4—C5	-111.53 (15)	C9—C7—C14—C12	-47.59 (13)
C1—C2—C4—C5	64.41 (15)	C8—C7—C14—C12	74.81 (13)
C2—C4—C5—C6	-178.17 (10)	C16-O3-C15-C14	-137.12 (10)
C15—C4—C5—C6	-49.13 (14)	C16—O3—C15—C4	103.46 (11)
C4—C5—C6—C7	53.90 (14)	C12-C14-C15-O3	48.75 (12)
C5—C6—C7—C9	-178.02 (10)	C7—C14—C15—O3	-178.88 (8)
C5—C6—C7—C8	63.89 (13)	C12-C14-C15-C4	165.60 (9)
C5—C6—C7—C14	-59.95 (13)	C7—C14—C15—C4	-62.02 (12)
C6—C7—C9—C10	168.69 (10)	C2—C4—C15—O3	-60.90 (12)
C8—C7—C9—C10	-72.89 (13)	C5—C4—C15—O3	171.23 (9)
C14—C7—C9—C10	52.92 (13)	C2—C4—C15—C14	-177.99 (10)
C7—C9—C10—C11	-59.35 (14)	C5—C4—C15—C14	54.14 (12)
C9—C10—C11—C12	59.45 (14)	C15—O3—C16—O4	-1.68 (17)
C10—C11—C12—O5	-169.09 (10)	C15—O3—C16—C17	176.10 (9)
C10-C11-C12-C13	75.89 (13)	O4—C16—C17—C18	-168.19 (13)

C10—C11—C12—C14 O5—C12—C14—C15 C13—C12—C14—C15 C11—C12—C14—C15 O5—C12—C14—C15	-52.68 (13) -70.92 (12) 49.37 (14) 176.34 (9) 160.04 (9)	O3-C16-C17-C18 O4-C16-C17-C20 O3-C16-C17-C20 C16-C17-C18-C19 C20-C17-C18-C19		14.06 (16) 12.88 (18) -164.88 (11) -179.39 (12) -0.6 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1…O5 ⁱ	0.85 (2)	1.80 (2)	2.648 (1)	174 (2)
O5—H5…O3	0.85 (2)	1.99 (2)	2.692 (1)	139 (2)

Symmetry codes: (i) x, y, z+1.

Fig. 1

